Prediksi Mahasiswa Berisiko Drop Out (DO) dengan ADTree dan NNge

Andri Andri, Paulus Paulus

Abstract


Dengan misi meningkatkan kualitas sumber daya manusia maka perguruan tinggi wajib meningkatkan kualitas lulusan dan juga menjaga agar jumlah mahasiswa Drop Out (DO) tidak terlalu tinggi. Selain kualitas lulusan, jumlah mahasiswa DO juga menjadi instrumen penilaian oleh Badan Akreditasi Nasional yaitu IAPT 3.0 pada indikator nomor 51. Oleh karena itu pengendalian terhadap jumlah mahasiswa DO perlu dilakukan. Berbagai upaya yang dilakukan oleh perguruan tinggi untuk meminimalkan jumlah DO umumnya belum memanfaatkan pola data historis untuk bisa dijadikan sebuah pengetahuan. Penelitian ini menawarkan solusi berbasis data mining untuk memprediksi mahasiswa yang berisiko DO menggunakan algoritma ADTree dan NNge. Pengumpulan dataset dari sistem informasi akademik perguruan tinggi. Kemudian data diseleksi dan nilai atribut diubah ke dalam format tertentu. Teknik evaluasi menggunakan 10-fold cross-validation. Evaluasi keseluruhan atribut sebanyak 13 dan sejumlah atribut setelah diseleksi menggunakan metode CfsSubsetEval bawaan dari aplikasi WEKA. Hasil prediksi berupa apakah mahasiswa DO atau tidak. Model yang dibangun dengan algoritma ADTree dan NNge mampu memprediksi kelas DO. Setelah jumlah atribut diseleksi dengan metode CfsSubsetEval dari 13 menjadi 2 (rata kehadiran dan IPK), maka dihasilkan tingkat keakuratan dengan algoritma ADTree mencapai 97.25% dan F-Measure sebesar 32.7% serta tingkat keakuratan dengan algoritma NNge mencapai 96.2% dan F-Measure sebesar 34.5%.

Keywords


Prediksi, Drop Out, ADTree, NNge

Full Text: PDF

Refbacks

  • There are currently no refbacks.


Lembaga Penelitian & Pengabdian pada Masyarakat (LPPM)
Universitas Mikroskil
Jl. Thamrin No. 124 Medan - 20212
Gedung A. 07.L2
Telp. 061-4573767
Email: publication@mikroskil.ac.id

Creative Commons License
The JSM site and its metadata are licensed under CC BY-NC-ND